I. Review - composition of functions.

A composite function is one which is composed of (or built up from) simpler functions. -example- $y=(3 x-4)^{3}$ can be thought of as a composite function, $f[g(x)]$, where

$$
f(x)=\quad g(x)=
$$

-examples- For each function, identify the OUTER (f) and $\operatorname{INNER}(g)$ functions for the composition.

1. $y=\sqrt{4-x^{2}}$
2. $y=\sin ^{3} x$
3. $y=\frac{4}{\sqrt[3]{x+5}}$
II. A new differentiation rule.

$$
\begin{array}{cl}
\text { CHAIN RULE: } & \frac{d}{d x} f[g(x)]=f^{\prime}[g(x)] \cdot g^{\prime}(x) \\
\text { OR } & \frac{d}{d x} f[u]=f^{\prime}[u] \cdot d u
\end{array}
$$

This rule is applied to derivatives of COMPOSITE FUNCTIONS.
-example- Consider the function: $\quad y=\left(x^{2}+3 x-4\right)^{7}$
a. Identify the inner function $-g(x)=$ \qquad (this is also called u)
b. Identify the outer function $-f(x)=$ \qquad
OR $f(u)=$ \qquad
c. Apply the chain rule to find $d y / d x$.

All of our previously learned rules can now be generalized:

1. The Power Rule: $\frac{d}{d x}\left[x^{n}\right]=\square$ or $\frac{d}{d x}\left[u^{n}\right]=$
2. The Trigonometric Functions:
a. $\frac{d}{d x}[\sin x]=$ \qquad or $\frac{d}{d x}[\sin u]=$ \qquad
b. $\frac{d}{d x}[\cos x]=$ \qquad or $\frac{d}{d x}[\cos u]=$ \qquad
c. $\frac{d}{d x}[\tan x]=$ \qquad or $\frac{d}{d x}[\tan u]=$
d. $\frac{d}{d x}[\sec x]=$ \qquad or $\frac{d}{d x}[\sec u]=$
e. $\frac{d}{d x}[\csc x]=$ \qquad or $\frac{d}{d x}[\csc u]=$
f. $\frac{d}{d x}[\cot x]=$ \qquad or $\frac{d}{d x}[\cot u]=$
-examples- Find the derivative for each of the following.
3. $y=(3 x-4)^{5}$
4. $y=\sqrt{6-x^{2}}$
5. $P(t)=\frac{5}{2 t+1}$
6. $\quad N(r)=\cos (7 r)$
7. $f(x)=\sin ^{3} x$ 6. $f(x)=\sin ^{3}(8 x)$
*Sometimes, we have to combine this chain rule with product or quotient rules. . .
8. $y=(7 x-4)^{3} \sin (2 x)$
9. $y=\frac{(5 x-4)^{3}}{(4 x+7)^{2}}$
10. $f(x)=x^{2} \sqrt{1-x^{2}}$

And of course . . let's not forget some applications.
-example- Find the equation of the line tangent to the curve $f(x)=\sec (2 x)$ when $x=\frac{\pi}{6}$.
-example- A particle moves along a horizontal line with position function $s(t)=\frac{4}{\sqrt{\sin t+2}}$, where s represents the position of the particle in relation to the origin (measured in feet), and t is measured in seconds. Find the velocity function, and the velocity at time $t=1$ and $t=2$.

