I. Review - composition of functions.

A composite function is one which is composed of (or built up from) simpler functions.

-example- $y = (3x-4)^3$ can be thought of as a composite function, f[g(x)], where

$$f(x) = g(x) =$$

-examples- For each function, identify the OUTER (f) and INNER(g) functions for the composition.

1.
$$y = \sqrt{4 - x^2}$$
 2. $y = \sin^3 x$ 3. $y = \frac{4}{\sqrt[3]{x + 5}}$

II. A new differentiation rule.

CHAIN RULE:
$$\frac{d}{dx} f[g(x)] = f'[g(x)] \cdot g'(x)$$

OR $\frac{d}{dx} f[u] = f'[u] \cdot du$

This rule is applied to derivatives of COMPOSITE FUNCTIONS.

-example- Consider the function: $y = (x^2 + 3x - 4)^7$

- a. Identify the inner function g(x) = _____ (this is also called u)
- b. Identify the outer function f(x) =_____

OR
$$f(u) =$$

c. Apply the chain rule to find dy/dx.

All of our previously learned rules can now be generalized:

- 1. The Power Rule: $\frac{d}{dx}[x^n] =$ ______ or $\frac{d}{dx}[u^n] =$ ______
- 2. The Trigonometric Functions:

a.
$$\frac{d}{dx}[\sin x] = _$$
 or
$$\frac{d}{dx}[\sin u] = _$$

b.
$$\frac{d}{dx}[\cos x] = _$$
 or
$$\frac{d}{dx}[\cos u] = _$$

c.
$$\frac{d}{dx}[\tan x] = _$$
 or
$$\frac{d}{dx}[\tan u] = _$$

d.
$$\frac{d}{dx}[\sec x] = _$$
 or
$$\frac{d}{dx}[\sec u] = _$$

e.
$$\frac{d}{dx}[\csc x] = _$$
 or
$$\frac{d}{dx}[\csc u] = _$$

f.
$$\frac{d}{dx}[\cot x] = _$$
 or
$$\frac{d}{dx}[\cot u] = _$$

-examples- Find the derivative for each of the following.

1.
$$y = (3x - 4)^5$$
 2. $y = \sqrt{6 - x^2}$

3.
$$P(t) = \frac{5}{2t+1}$$
 4. $N(r) = \cos(7r)$

5.
$$f(x) = \sin^3 x$$
 6. $f(x) = \sin^3(8x)$

*Sometimes, we have to combine this chain rule with product or quotient rules. . .

7. $y = (7x - 4)^3 \sin(2x)$

8.
$$y = \frac{(5x-4)^3}{(4x+7)^2}$$

9.
$$f(x) = x^2 \sqrt{1 - x^2}$$

And of course . . . let's not forget some applications.

-example- Find the equation of the line tangent to the curve $f(x) = \sec(2x)$ when $x = \frac{\pi}{6}$.

-example- A particle moves along a horizontal line with position function $s(t) = \frac{4}{\sqrt{\sin t + 2}}$, where *s* represents the position of the particle in relation to the origin (measured in feet), and *t* is measured in seconds. Find the velocity function, and the velocity at time t = 1 and t = 2.